Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
N Biotechnol ; 70: 93-101, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35643263

RESUMO

Synthesis of carbohydrate fatty acid esters catalyzed by immobilized lipases is a pathway to obtain specific isomers from renewable feedstock, compared to unselective chemical esterification. While the use of low-solvent reaction media (≤ 10 %) offers advantages, the interactive effects of these media with biocatalysts and substrates should be modulated towards high catalytic efficiency and substrate availability. Among the investigated co-solvents, tert-butanol and DMSO in a mixture of lauric acid substrate/co-solvent (90/10; v/v) resulted in high bioconversion yields using either Novozym® 435 or Lipozyme® RM IM, as biocatalysts. Increased hydrophobicity of the Novozym® 435 immobilization support favored bioconversion, while polar substrate surface area enlargement by ball-milling improved productivity through enhancement of fructose availability. A compromise between bioconversion yield (19.7 %) and productivity (9.45 µmol/L min) was obtained in the reactions catalyzed by Novozym® 435 using ball-milled fructose at a concentration of 0.2 mol/L. Combining mechanical ball-milling of the substrates with low-solvent reaction media is expected to enhance and expand enzymatic synthesis of carbohydrate fatty acid esters.


Assuntos
Ácidos Graxos , Frutose , Carboidratos , Enzimas Imobilizadas , Esterificação , Ésteres , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...